Basic Trigonometric Identities
Trending Questions
Find the value of
What is the derivative of ?
Find the value of
The value of is
Prove that:
2(sin6x+cos6x)−3(sin4x+cos4x)+1=0
- x2−2x+4=0
- x2+2x−4=0
- x2−2x−4=0
- 4x2+2x−1=0
Find six trigonometric functions of
If tan x=ba, then find the value of √a+ba−b+√a−ba+b.
If and , then
and
and
and
and can not be determined
(i) If tanA=56 and tanB=111, prove that A+B= π4
(ii) If tanA=mm−1 and tanB=m2m−1
then prove that A−B=π4
If , then the general value of is
None of these
The value of is
If tanθ=x−14x, then sec \theta-tan \theta is equal to
−2x, 12x
2x, 12x
−12x, 2x
2x
- 13−4cos2θ+6sin2θcos2θ
- 13−4cos6θ
- 13−4cos2θ+6cos4θ
- 13−4cos4θ+2sin2θcos2θ
If x=rsinθcosϕ, y=rsinθsinϕ and z=rcosθ, then x2+y2+z2 is independent of
0, ϕ
c, ϕ
r, θ
r
- sin4A+sin4B=2sin2Asin2B
- sin4A+sin4B=2cos2Acos2B
- cos4Bcos2A+sin4Bsin2A=2
- cos4Bcos2A+sin4Bsin2A=1
The value of cos2 48∘−sin2 12∘ is
√5+18
√5−18
√5+15
√5+12√2
- 44625
- 616225
- 706625
- 544225
If α+β=90∘, show that the maximum value of cosα cosβis12
Find six trigonometric functions of
- [12, 1]
- [12, 58]
- [14, 1]
- [78, 1]
- 4
- 1
- 0
- None of the above
If tan2x+secx−a=0 has alteast one solution, then a∈..........
(−∞, 1]
[1, ∞)
(−∞, −1]
[-1, 1]
How do you prove ?
The value of cos4+θ+sin4θ−6 cos2θ sin2θ is
cos 2θ
sin 2θ
cos 4θ
none of these
The value ofsin 5α−sin 3αcos 5α+2 cos 4α+cos 3α is
cot α2
none of these
cot α
tan α2
- π4<A<π2
- π2<A<π
- A=π2
- A<π4
What is cosec(-585)