wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the general solution of the equation cos4x=cos2x

Open in App
Solution

Step 1: Simplification
Given: cos4x=cos2x
cos4xcos2x=0

2sin(4x+2x2)sin(4x2x2)=0 [cosAcosB=2sin(A+B2)sin(AB2)]
2sin(6x2)sin(2x2)=0
2sin3xsinx=0
sin3xsinx=0
So, either sin3x=0 or sinx=0
We solve sin3x=0 and sinx=0 separately.

Step 2: General solution for sin3x=0
sin3x=0 or sin3x=sin0
So the general solution is
3x=nπ±(1)n(0)
3x=nπ
x=nπ3

Step 3: General solution for sinx=0
sinx=0
x=nπ

Final answer :x=nπ, nπ3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon