wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x,y,z are three real numbers and A=1cos(xy)cos(xz)cos(yx)1cos(yz)cos(zx)cos(zy)1
then
A is

A
symmetric matrix
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
non-singular matrix
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
not invertibe matrix
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
orthogonal matrix
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C not invertibe matrix
x,y,zR
A=1cos(xy)cos(xz)cos(yx)1cos(yz)cos(zx)cos(zy)1

A=ATcos(θ)=cosθ
A is symmetric

A=1cosxcosy+sinxsinycosxcosz+sinxsinz)cosycosx+sinysinx1cosycosz+sinysinzcoszcosx+sinzsinxcoszcosy+sinzsiny1

A=⎢ ⎢cos2x+sin2xcosxcosy+sinxsinycosxcosz+sinxsinz)cosycosx+sinysinxcos2y+sin2ycosycosz+sinysinzcoszcosx+sinzsinxcoszcosy+sinzsinycos2z+sin2z⎥ ⎥

A=cosxsinx0cosysiny0coszsinz0cosxcosycoszsinxsinysinz000

A=A1×A2|A1|=0 , |A2|=0

A is singular as |A|=|A1|.|A2|=0
A is not invertible
AAT=A.AA2I
A is not orthogonal

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adjoint and Inverse of a Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon