The correct option is
C 13lnsin3x−15lnsin5x+c∫sin2xsin5xsin3xdx
=∫sin(5x−3x)sin5xsin3xdx replace 2x=5x−3x
=∫sin5xcos3x−cos5xsin3xsin5xsin3xdx using sin(A−B)=sinAcosB−cosAsinB
=∫sin5xcos3xsin5xsin3xdx−∫cos5xsin3xsin5xsin3xdx
=∫cos3xsin3xdx−∫cos5xsin5xdx
=∫cot3xdx−∫cot5xdx
=13lnsin3x−15lnsin5x+c using the formula ∫cotaxdx=1alnsin3x
where c is the constant of integration