wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate:sin2xsin5xsin3xdx

Open in App
Solution

sin2xsin5xsin3xdx

=sin(5x3x)sin5xsin3xdx replace 2x=5x3x

=sin5xcos3xcos5xsin3xsin5xsin3xdx using

sin(AB)=sinAcosBcosAsinB

=sin5xcos3xsin5xsin3xdxcos5xsin3xsin5xsin3xdx

=cos3xsin3xdxcos5xsin5xdx

=cot3xdxcot5xdx

=13lnsin3x15lnsin5x+c using the formula

cotaxdx=1alnsinax
where c is the constant of integration


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Expressions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon