1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Convexity
Range of the ...
Question
Range of the function
f
(
x
)
=
s
e
c
2
x
−
t
a
n
x
s
e
c
2
x
+
t
a
n
x
−
π
2
<
x
<
π
2
, is
A
R
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
R
−
(
1
3
,
3
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
[
1
3
,
3
]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
[
−
1
,
5
3
]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
C
[
1
3
,
3
]
Let
f
(
x
)
=
y
y
=
s
e
c
2
x
−
tan
x
s
e
c
2
x
+
tan
x
⇒
y
(
s
e
c
2
x
+
tan
x
)
=
s
e
c
2
x
−
tan
x
⇒
y
(
1
+
tan
2
x
+
tan
x
)
=
1
+
tan
2
x
−
tan
x
⇒
y
+
y
tan
2
x
+
y
tan
x
=
1
tan
2
x
−
tan
x
⇒
tan
2
x
(
y
−
1
)
+
tan
(
y
+
1
)
+
y
−
1
=
0
Now it is given
−
π
2
<
x
<
π
2
So
tan
x
is real in
x
∈
(
−
π
2
,
π
2
)
So
D
≥
0
⇒
(
y
+
1
)
2
−
4
(
y
−
1
)
(
y
−
1
)
≥
0
⇒
y
2
+
1
+
2
y
−
4
(
y
−
1
)
2
≥
0
⇒
y
2
+
2
y
+
1
−
4
(
y
2
+
1
−
2
y
)
≥
0
⇒
y
2
+
2
y
+
1
−
4
y
2
−
4
+
8
y
≥
0
⇒
−
3
y
2
+
10
y
−
3
≥
0
⇒
3
y
2
−
910
y
+
3
≤
0
⇒
3
y
2
−
9
y
−
y
+
3
≤
0
⇒
3
y
(
y
−
3
)
−
1
(
y
−
3
)
≤
0
⇒
(
3
y
−
1
)
(
y
−
3
)
≤
0
Suggest Corrections
0
Similar questions
Q.
lim
x
→
π
4
s
e
c
2
x
−
2
t
a
n
x
−
1
Q.
Range of
f
(
x
)
=
s
e
c
x
+
t
a
n
x
−
1
t
a
n
x
−
s
e
c
x
+
1
:
x
ϵ
(
0
,
π
2
)
is -
Q.
If the function
f
(
x
)
=
⎧
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩
(
1
+
|
tan
x
|
)
p
|
tan
x
|
,
−
π
3
<
x
<
0
q
x
=
0
e
sin
3
x
sin
2
x
,
0
<
x
<
π
3
is continuous at
x
=
0
, then
Q.
If
f
(
x
)
=
[
tan
x
]
+
√
tan
x
−
[
tan
x
]
,
0
≤
x
<
π
2
, where
[
.
]
denotes thegreatest integer function, then
Q.
A function is defined as
f
(
x
)
=
[
tan
x
]
+
√
tan
x
−
[
tan
x
]
,
0
≤
x
<
π
2
([.] denotes the greatest integer function), then
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Convexity and Concavity
MATHEMATICS
Watch in App
Explore more
Convexity
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app