wiz-icon
MyQuestionIcon
MyQuestionIcon
86
You visited us 86 times! Enjoying our articles? Unlock Full Access!
Question

10 mL of a \(𝐻_{2}𝑆𝑂_{4}\) solution is diluted to 100 mL. 25 mL of this diluted solution is mixed with 50 mL of a 0.5 N NaOH solution. The resulting solution requires 0.265 g of \(π‘π‘Ž_{2}𝐢𝑂_{3}\) for complete neutralisation. The normality of the original \(𝐻_{2}𝑆𝑂_{4}\) solution is

Open in App
Solution

Calculating the normality of \(𝑯_{𝟐}𝑺𝑢_{πŸ’}\) solution used to react with \(𝑡𝒂𝑢𝑯\), and neutralise \(𝑡𝒂_{𝟐}π‘ͺ𝑢_{πŸ‘}\)

Assuming, Normality of \(𝐻_{2}𝑆𝑂_{4} = 𝑁_2\)
\(π‘π‘’π‘šπ‘π‘’π‘Ÿ ~π‘œπ‘“ ~π‘’π‘žπ‘’π‘–π‘£π‘Žπ‘™π‘’π‘›π‘‘π‘  = π‘€π‘œπ‘™π‘’π‘  Γ— 𝑛 βˆ’ π‘“π‘Žπ‘π‘‘π‘œr\)
\(\dfrac{Mass}{Molar~ mass}\times~n-factor\)

Milliequivalents of \(𝐻_{2}𝑆𝑂_{4}\) = Milliequivalents of \(π‘π‘Žπ‘‚π» + Milliequivalents ~of~ π‘π‘Ž_{2}𝐢𝑂_{3}\)

\(𝑁_{2}\times 𝑉_{𝐻_2𝑆𝑂_4}\)

= \(N_{N_aOH}\times_{V_{NaOH}}+\dfrac{m_{Na_2CO_3}}{M_{Na_2CO_3}}\times~n-factor\times1000\)

\(N_{2}\times25=0.5\times50+\frac{0.265}{106}\times2\times1000\)

\(N_{2}=\dfrac{25+5}{25}=\dfrac{30}{25}=1.2~N\)

Calculating the normality of the original \(𝑯_{𝟐}𝑺𝑢_{πŸ’}\) solution

For dilution process:

\(𝑁_{1}𝑉_{1} = 𝑁_{2}𝑉_{2}\)

\(\Rightarrow 𝑁_{1}\times 10 = 𝑁_{2}\times 100\)

\(N_{2}=\dfrac{1.2\times100}{10}=12~N\)

Hence, the normality of the original \(𝐻_{2}𝑆𝑂_{4}\) solution is \(12 ~𝑁\).

So, option (A) is the correct answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Reactions in Solutions
CHEMISTRY
Watch in App
Join BYJU'S Learning Program
CrossIcon