Calculating the normality of \(π―_{π}πΊπΆ_{π}\) solution used to react with \(π΅ππΆπ―\), and neutralise \(π΅π_{π}πͺπΆ_{π}\)
Assuming, Normality of \(π»_{2}ππ_{4} = π_2\)
\(ππ’ππππ ~ππ ~πππ’ππ£πππππ‘π = πππππ Γ π β ππππ‘πr\)
\(\dfrac{Mass}{Molar~ mass}\times~n-factor\)
Milliequivalents of \(π»_{2}ππ_{4}\) = Milliequivalents of \(ππππ» + Milliequivalents ~of~ ππ_{2}πΆπ_{3}\)
\(π_{2}\times π_{π»_2ππ_4}\)
= \(N_{N_aOH}\times_{V_{NaOH}}+\dfrac{m_{Na_2CO_3}}{M_{Na_2CO_3}}\times~n-factor\times1000\)
\(N_{2}\times25=0.5\times50+\frac{0.265}{106}\times2\times1000\)
\(N_{2}=\dfrac{25+5}{25}=\dfrac{30}{25}=1.2~N\)
Calculating the normality of the original \(π―_{π}πΊπΆ_{π}\) solution
For dilution process:
\(π_{1}π_{1} = π_{2}π_{2}\)
\(\Rightarrow π_{1}\times 10 = π_{2}\times 100\)
\(N_{2}=\dfrac{1.2\times100}{10}=12~N\)
Hence, the normality of the original \(π»_{2}ππ_{4}\) solution is \(12 ~π\).
So, option (A) is the correct answer.