Calculating the normality of \(π―_{π}πΊπΆ_{π}\) to neutralise \(π΅π_{π}πͺπΆ_{π}\)
For the neutralisation reaction
\(π»_{2}ππ_{4} + ππ_{2}πΆπ_{3} β ππ_{2}ππ_{4} + π»_{2}
π + πΆπ_{2}\)
Equivalents of \(π»_{2}ππ_{4} = Equivalents ~of~ ππ_{2}πΆπ_{3}\)
\(N_{1}\times\dfrac{10.2}{1000}=\dfrac{1}{10}\times\dfrac{22.7}{1000}\)
\(N_{1}\times\dfrac{1\times22\times1000}{10.2\times10\times1000}=0.222549~N\)
Calculating the volume of water required for dilution
For dilution, \(π_{1}π_{1} = π_{2}π_{2}\)
Where, \(π_{1} = 0.222549 ~π\)
\(N_{2}=\dfrac{N}{10}\)
\(π_{1} = 400~ ππΏ\)
\(π_{2} = (400 + π₯) πL\)
\(0.222549 ~π\times400=\dfrac{N}{10}\times(400+x)\)
\(890.2 = (400 + π₯)\)
\(π₯ = 890.2 β 400 = 490.2 πL\)
Hence, 490.2 ππΏ of water should be added to 400 ππΏ of this \(π»_{2} ππ_{4}\) solution in order to make it exactly π/10.
So, option (A) is the correct answer