wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

9. Income per 0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800day inNumber 4 8of persons104

Open in App
Solution

The given data is:

Income per day Number of persons
0-100 4
100-200 8
200-300 9
300-400 10
400-500 7
500-600 5
600-700 4
700-800 3

Create the following table:

Income per day Number of persons, f i Midpoint, x i f i x i | x i x ¯ | f i | x i x ¯ |
0-100 4 50 200 308 1232
100-200 8 150 1200 208 1664
200-300 9 250 2250 108 972
300-400 10 350 3500 8 80
400-500 7 450 3150 92 644
500-600 5 550 2750 192 960
600-700 4 650 2600 292 1168
700-800 3 750 2250 392 1176
i=1 n f i =50 i=1 n f i x i =17900 i=1 n f i | x i x ¯ | =7896

The formula to calculate the mean when continuous frequency is given is,

x ¯ = i=1 n x i f i i=1 n f i x ¯ = 1 N i=1 n x i f i

Where, N is the sum of frequency.

Substitute 50 for N and 17900 for i=1 n x i f i in equation (1).

x ¯ = 17900 50 =358

Therefore, the mean of the given data is 358.

The formula to calculate the mean deviation about the mean is,

M.D= i=1 n f i | x i x ¯ | i=1 n f i M.D= 1 N i=1 n f i | x i x ¯ |

Substitute 50 for N and 7896for i=1 n f i | x i x ¯ | in equation (2).

M.D.= 7896 50 =157.92

Therefore, the mean deviation of the given data is 157.92.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mean Deviation about Mean for Continuous Frequency Distributions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon