According to diagram,
There is no relative motion between and block and wedge,
\(ma \cos\theta=mg \sin\theta\)
Therefore,
\(a=g \tan\theta\)
Now, force exerted by wedge on the block is,
\(N=ma \cos\theta+mg \sin\theta\)
Put the value of a in above equation,
\(N=mg \cos\theta+m(g \tan\theta)\sin\theta\)
\(N=mg \cos\theta+m(g \dfrac{\sin\theta}{\cos\theta}) \sin\theta\)
On solving above equation, we get
\(N=mg\dfrac{\cos^2\theta+\sin^2\theta}{\cos\theta}\)
Hence,
\(N=\dfrac{mg}{\cos\theta}\)
\(\therefore \cos ^2\theta + \sin ^2\theta =1\)
Final answer: (d)