Find initial momentum and kinetic energy.
Initial momentum, pi=mAv
Initial kinetic Energy,
K.E.i=12mAv2+0=12mAv2
Find final momentum and kinetic energy.
After collision, let the velocity of the particle A be v1 and that of particle B be v2.
Final Momentum
pf=mAv1+mBv2
Final Kinetic Energy
K.E.f=12mAv21+12mBv22
Apply momentum and kinetic energy conservation and find v1 & v2 .
Using conservation of momentum, initial momentum will be same as final momentum.
mAv=mAv1+mBv2
mA(v–v1)=mBv2 …(i)
Since, this is an elastic collision, the Kinetic Energy shall also remain conserved.
K.Ei=K.Ef
12mAv2=12mAv21+12mBv22 …(ii)
mA(v2–v21)=mBv22
mA(v−v1)(v+v1)=mBv22
Dividing equation (ii) by (i), we get,
mA(v–v1)(v+v1)mA(v−v1)=mBv22mBv2
(v+v1)=v2
v=(v2–v1)
Using these values in (ii)
12mA(v22+v21–2v1v2)=12mAv21+12mBv22
mAv22+mAv21−2mAv1v2=mAv21+mBv22
mAv22−2mAv1v2=mBv22
mAv2−2mAv1=mBv2
mA(v+v1)−2mAv1=mB(v+v1)
v1=mA−mBmA+mBv
v2=v+v1
v2=v+mA−mBmA+mBv
v2=2mAmA+mBv
Find Initial de-Broglie wavelength for particle A.
Initial de-Broglie wavelength for particle A(λi), with initial momentum as pi
λi=hpi=hmA×v
Find final de-Broglie wavelength for particle A.
Final de-Broglie wavelength for particleA(λf), with final momentum as pf
λf=hpf=hmA×v1=hmA(mA−mBmA+mB)v
λf=h(mA+mB)mA(mA−mB)v
Change in de-Broglie wavelength (Δλ)
Δλ=λf−λi=h(mA+mB)mA(mA−mB)v−hmA×v
Δλ=hmAv(mA+mBmA−mB−1)
Final Answer:hmAv(mA+mBmA−mB−1)