wiz-icon
MyQuestionIcon
MyQuestionIcon
17
You visited us 17 times! Enjoying our articles? Unlock Full Access!
Question

A solution of the equation cos2θ+sinθ+1=0, lies in the interval
(a) -Ï€/4,Ï€/4
(b) π/4,3π/4
(c) 3Ï€/4,5Ï€/4
(d) 5Ï€/4,7Ï€/4

Open in App
Solution

(d) 5Ï€/4,7Ï€/4

Given:
cos2θ+sinθ+1=0⇒(1-sin2θ)+sinθ+1=0⇒1-sin2θ+sinθ+1=0⇒sin2θ-sinθ-2=0⇒sin2θ-2sinθ+sinθ-2=0⇒sinθ(sinθ-2)+1(sinθ-2)=0⇒(sinθ-2)(sinθ+1)=0
⇒sinθ-2=0 or sinθ+1=0
⇒sinθ=2 or sinθ=-1
sinθ=2 is not possible.
⇒sinθ=-1
∴ sinθ=sin3π2
⇒θ=nπ+(-1)n3π2,n∈Z

The values of θ lies in the third and fourth quadrants.
Hence, θ lies in 5π4,7π4.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon
footer-image