AandB are two events such that P(A)=0.54,P(B)=0.69andP(A∩B)=0.35.
Find (i)P(A∪B) (ii)P(A′∩B′) (iii)P(A∩B′) (iv)P(B∩A′)
Open in App
Solution
(i) Calculate P(A∪B)
Given: P(A)=0.54,P(B)=0.69,P(A∩B)=0.35...(i)
As we know that, P(A∪B)=P(A)+P(B)−P(A∩B)....(ii)
Putting values of (i) in (ii) P(A∪B)=0.54+0.69−0.35=0.88
Hence P(A∪B)=0.88
(ii) Calculate P(A′∩B′) P(A′∩B′)=P(A∪B)′(De Morgan's law)
As we know that, P(A∪B)′+P(A∪B)=1 ⇒P(A∪B)′=1−P(A∪B) ⇒P(A∪B)′=1−0.88=0.12
Hence P(A∪B)′=P(A′∩B′)=0.12
(iii) Calculate P(A∩B′)
Given : P(A)=0.54,P(B)=0.69,P(A∩B)=0.35...(i)
From figure below, P(A∩B′)=P(A)−P(A∩B)...(ii)
Putting values (i) in (ii) then we get P(A∩B′)=0.54−0.35=0.19
Hence P(A∩B′)=0.19 (iv) Calculate P(B∩A′)
Given : P(A)=0.54,P(B)=0.69,P(A∩B)=0.35...(i)
From the figure, P(B∩A′)=P(B)−P(A∩B)...(ii)
Putting values (i) in (ii) then we get P(B∩A′)=0.69−0.35=0.34
Hence P(B∩A′)=0.34