Finding the distance AB,BC,AC
A(3,6,9),B(10,20,30),C(25,−415)
Using distance formula
AB=√(x2−x1)2+(y2−y1)2+(z2−z1)2
Here, x1=3,y1=6,z1=9
x2=10,y2=20,z2=30AB=√(10−3)2+(20−6)2+(30−9)2
=√(7)2+(14)2+(21)2
=√49+196+441
=√686
Calculating BC
B(10,20,30),
C(25,−41,5)
Here, x1=10,y1=20,z1=30
x2=25,y2=−41,z2=5
BC=√(25−10)2+(−41−20)2+(5−30)2
=√(15)2+(−61)2+(−25)2
=√225+3721+625
=√4571
∴AB=√686 and BC=√4571
Calculating AC
A (3,6,9),B(10,20,30),C(25,−41,5)
∴AB=√686 and BC=√4571
AC=√(x2−x1)2+(y2−y1)2+(z2−z1)2AC=√(3−25)2+(6−(−41))2+(9−5)2
=√(−22)2+(6+41)2+(4)2
=√484+(47)2+16
=√484+2209+16
=√2709
Now,
AB=√686,BC=√4571,AC=√2709
Using Pythagoras Theorem In Right angle triangle,
(Hypotenuse)2=(Height)2+(Base)2
we take Hypotenuse =√4571
As,
AB2+AC2≠BC2
So, the triangle formed is not right angles triangle.