wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Are the pointsA(3,6,9),B(10,20,30) and C(25,41,5), the vertices of a right angled triangle?

Open in App
Solution

Finding the distance AB,BC,AC

A(3,6,9),B(10,20,30),C(25,415)
Using distance formula
AB=(x2x1)2+(y2y1)2+(z2z1)2

Here, x1=3,y1=6,z1=9

x2=10,y2=20,z2=30

AB=(103)2+(206)2+(309)2

=(7)2+(14)2+(21)2

=49+196+441

=686

Calculating BC

B(10,20,30),
C(25,41,5)

BC=(x2x1)2+(y2y1)2+(z2z1)2

Here, x1=10,y1=20,z1=30
x2=25,y2=41,z2=5

BC=(2510)2+(4120)2+(530)2

=(15)2+(61)2+(25)2

=225+3721+625

=4571

AB=686 and BC=4571

Calculating AC

A (3,6,9),B(10,20,30),C(25,41,5)

AB=686 and BC=4571

AC=(x2x1)2+(y2y1)2+(z2z1)2

Here, x1=3,y1=6,z1=9
x2=25,y2=41,z2=5

AC=(325)2+(6(41))2+(95)2

=(22)2+(6+41)2+(4)2

=484+(47)2+16

=484+2209+16

=2709

Now,

AB=686,BC=4571,AC=2709

Using Pythagoras Theorem In Right angle triangle,
(Hypotenuse)2=(Height)2+(Base)2

we take Hypotenuse =4571
As,
AB2+AC2BC2
So, the triangle formed is not right angles triangle.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon