wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate each of the following from first principles:
(i) sin 2x
(ii) cos x
(iii) tan x
(iv) tan x2

Open in App
Solution

Let f(x)=sin x. Then f(x+h)=sin (x+h)

d(f(x))dx=limh0f(x+h)f(x)h

=limh0sin 2(x+h)sin 2xh

=limh02sin(2(x+h)2x2)cos2(x+h)+2x2h

=limh0sin(2(x+h)2)(2(x+h)2x)(2(x+h)+2x)(2(x+h)+2x)hcos(2(x+h)+2x2)

=limh0sin2(x+h)2x2cos2(x+h)2x2limh02(x+h)2x(2(x+h)+2x)hlimh0cos(2(x+h)+2x2)

=1×222xcos(2x)=cos(2x)2x

We have,
f(x)=cos x

f(x)=limh0f(x+h)f(x)h

=limh0cosx+hcosxh

=limh02sin((x+h)x2)(x+hx)(x+h+x)(x+hx2)(x+h+x)h×sin(x+h+x2)

Multiplying numerator and denominator by (x+h)+x

=limh0sin((x+h)x2)((x+h)x2)×x+hx(x+h+x)h×sin((x+h)+x2)

=limh01hh(x+h+x)×sin((x+h)+x2)

=limh01h(x+h+x)sinx+h+x2

=sinx2x

(iii) We have,

f(x)=tan x

f(x)=limh0f(x+h)f(x)h

f(x)=limh0tan(x+h)tanxh

=limh0sinx+hxh cosx+hcosx

=limh0sinx+hx(x+hx)cosx.cosx+h=limh0sin(x+hx)(x+hx)(x+h+x)cosx.cosx+h

=limh0sin(x+hx)(x+hx)×1(x+h+x)cosx.cosx+h

=1×12xcosxcosx+h

=12xcos2x=sec2x2x

(iv) We have,

f(x)=tan x2

f(x)=limh0f(x+h)f(x)h

=limh0tan(x+h)2tanx2h=limh0sin(x+h)2cos(x+h)2sinx2cosx2h

=limh0sin(x+h)2cosx2cos(x+h)2sinx2cos(x+h)2cosx2h=limh0sin((x+h)2x2)h.cos(x+h)2.cosx2

=limh0sin(x2+h2+2hxx2)h.cos(x+h)2.cosx2=limh0sin(h2+2hx)h.cos(x+h)2.cosx2

=limh0sin hh×(h+2x)cos(x+h)2.cosx2

=1.2xcos2(x)2

=2x sec2 x2









flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon