Let f(x)=sin √x. Then f(x+h)=sin √(x+h)
d(f(x))dx=limh→0f(x+h)−f(x)h
=limh→0sin √2(x+h)−sin √2xh
=limh→02sin(√2(x+h)−√2x2)cos⎛⎜⎝√2(x+h)+√2x2⎞⎟⎠h
=limh→0sin(√2(x+h)2)(√2(x+h)−√2x)(√2(x+h)+√2x)(√2(x+h)+√2x)hcos(√2(x+h)+2x2)
=limh→0sin⎛⎜⎝√2(x+h)−√2x2⎞⎟⎠cos⎛⎜⎝√2(x+h)−√2x2⎞⎟⎠limh→02(x+h)−2x(√2(x+h)+√2x)hlimh→0cos(√2(x+h)+2x2)
=1×22√2xcos(√2x)=cos(√2x)√2x
We have,
f(x)=cos √x
∵f′(x)=limh→0f(x+h)−f(x)h
=limh→0cos√x+h−cos√xh
=limh→0−2sin(√(x+h)−√x2)(√x+h−√x)(√x+h+√x)(√x+h−√x2)(√x+h+√x)h×sin(√x+h+√x2)
Multiplying numerator and denominator by √(x+h)+√x
=limh→0−sin(√(x+h)−√x2)(√(x+h)−√x2)×x+h−x(√x+h+√x)h×sin(√(x+h)+√x2)
=limh→0−1hh(√x+h+√x)×sin(√(x+h)+√x2)
=limh→0−1h(√x+h+√x)sin√x+h+√x2
=−sin√x2√x
(iii) We have,
f(x)=tan √x
∵f′(x)=limh→0f(x+h)−f(x)h
∵f′(x)=limh→0tan√(x+h)−tan√xh
=limh→0sin√x+h−√xh cos√x+hcos√x
=limh→0sin√x+h−√x(x+h−x)cos√x.cos√x+h=limh→0sin(√x+h−√x)(√x+h−√x)(√x+h+√x)cos√x.cos√x+h
=limh→0sin(√x+h−√x)(√x+h−√x)×1(√x+h+√x)cos√x.cos√x+h
=1×12√xcos√xcos√x+h
=12√xcos2x=sec2x2√x
(iv) We have,
f(x)=tan x2
∵f′(x)=limh→0f(x+h)−f(x)h
=limh→0tan(x+h)2−tanx2h=limh→0sin(x+h)2cos(x+h)2−sinx2cosx2h
=limh→0sin(x+h)2cosx2−cos(x+h)2sinx2cos(x+h)2cosx2h=limh→0sin((x+h)2−x2)h.cos(x+h)2.cosx2
=limh→0sin(x2+h2+2hx−x2)h.cos(x+h)2.cosx2=limh→0sin(h2+2hx)h.cos(x+h)2.cosx2
=limh→0sin hh×(h+2x)cos(x+h)2.cosx2
=1.2xcos2(x)2
=2x sec2 x2