Evaluate: ∫sin2xsin5xsin3xdx
I=∫(sin(5x−3x)sin5xsin3x)dx
I=∫(sin5xcos3x−cos5xsin3xsin5xsin3x)dx
I=∫(cos3xsin3x)dx−∫(cos5xsin5x)dx
I=(13)log|sin3x|−(15)log|sin5x|+c
Prove that sinx+sin7x+sin3x+sin5x=4cosxcos2xsin4x
Or
Solve √3cosx−sinx=1