Given:
(x+2y3)dydx=y
⇒dydx=yx+2y3
⇒dxdy=x+2y3y
⇒dxdy=xy+2y2
⇒dxdy−xy=2y2
Compare with standard form of linear differential equation
∴Standard form :dxdy+Px=Q
P=−1y,Q=2y2
I.F.=e∫−1ydy (∵I.F.=e∫P. dy)
=e−ln|y|−1|y|
So, the solution of the equation is
x⋅1|y|=∫2y2⋅1|y|dy+c
[∵x(I.F.)=∫Q.(I.F.)dy+c]
⇒±xy=±∫2y dy+c [∵|y|=±y]
⇒xy=∫2y dy±c
⇒xy=2⋅y22+k
⇒x=y(y2+k)
Hence, the required solution is
x=y(y2+k)