wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the general solutions of the following equations:
(i) sin2x=32
(ii) cos3x=12
(iii) sin9x=sinx
(iv) sin2x=cos3x
(v) tanx+cot2x=0
(vi) tan3x=cotx
(vii) tan2xtanx=1
(viii) tanmx+cotnx=0
(ix) tanpx=cotqx
(x) sin2x+cosx=0
(xi) sinx=tanx
(xii) sin3x+cos2x=0

Open in App
Solution

We have:

(i) sin2x=32
⇒ sin2x=sinπ3
⇒ 2x=nπ+(-1)nπ3 n∈Z
⇒ x=nπ2+(-1)nπ6, n∈Z

(ii) cos3x=12
⇒ cos3x=cosπ3
⇒ 3x=2nπ±π3 n∈Z
⇒ x=2nπ3±π9, n∈Z

(iii) sin9x=sinx
⇒ sin9x-sinx=0
⇒ 2sin9x-x2cos9x+x2=0
⇒ sin8x2=0or cos10x2=0
⇒ sin4x=0 or cos5x=0
⇒ 4x=nπ, n∈Z or 5x=(2n+1)π2, n∈Z
⇒ x=nπ4, n∈Z or x=(2n+1)π10, n∈Z

(iv) sin2x=cos3x
cos3x=sin2x
⇒ cos3x=cosπ2-2x
⇒3x=2nπ±π2-2x,n∈Z
On taking positive sign, we have:
3x=2nπ+π2-2x
⇒ 5x=2nπ+π2
⇒ x=2nπ5+π10
⇒x=(4n+1)π10, n∈Z
Now, on taking negative sign, we have:
3x=2nπ-π2+2x,n∈Z
⇒ x=2nπ-π2
⇒ x=(4n-1)π2,n∈Z

(v) tanx+cot2x=0

⇒tanx=-cot2x⇒tanx=tanπ2+2x⇒x=nπ+π2+2x,n∈Z⇒-x=nπ+π2,n∈Z⇒x=-nπ-π2,n∈Z⇒x=mπ-π2,m=-n∈Z

(vi) tan3x=cotx
⇒tan3x=tanπ2-x⇒3x=nπ+π2-x,n∈Z⇒4x=nπ+π2,n∈Z⇒x=nπ4+π8,n∈Z

(vii) tan2xtanx=1
⇒tan2x=1tanx⇒tan2x=cotx⇒tan2x=tanπ2-x⇒2x=nπ+π2-x,n∈Z⇒3x=nπ+π2,n∈Z⇒x=nπ3+π6,n∈Z

(viii) tanmx+cotnx=0

⇒tanmx=-cotnx⇒tanmx=tanπ2+nx⇒mx=rπ+π2+nx,r∈Z⇒(m-n)x=rπ+π2,r∈Z⇒x=2r+1m-nπ2,r∈Z

(ix) tanpx=cotqx
⇒tanpx=tanπ2-qx⇒px=nπ+π2-qx,n∈Z⇒(p+q)x=nπ+π2,n∈Z⇒x=2n+1p+qπ2,n∈Z

(x) sin2x+cosx=0
⇒cosx=-sin2x⇒cosx=cosπ2+2x⇒x=2nπ±π2+2x,n∈Z
On taking positive sign, we have:
x=2nπ+π2+2x⇒-x=2nπ+π2⇒x=2mπ-π2,m=-n∈Z⇒x=(4m-1)π2,m∈Z
On taking negative sign, we have:
x=2nπ-π2-2x⇒3x=2nπ-π2⇒x=(4n-1)π6,n∈Z

(xi) sinx=tanx
⇒sinx-tanx=0⇒sinx-sinxcosx=0⇒sinx1-1cosx=0⇒sinx(cosx-1)=0

⇒sinx=0 or cosx-1=0
Now,
sinx=0⇒x=nπ,n∈Z

cosx-1=0⇒cosx=1⇒cosx=cos0⇒x=2mπ,m∈Z

(xii) sin3x+cos2x=0
⇒cos2x=-sin3x⇒cos2x=cosπ2+3x⇒2x=2nπ±π2+3x,n∈Z
On taking positive sign, we have:
2x=2nπ+π2+3x⇒-x=2nπ+π2⇒x=2mπ-π2,m=-n∈Z⇒x=(4m-1)π2,m∈Z
On taking negative sign, we have:
2x=2nπ-π2-3x⇒5x=2nπ-π2⇒x=(4n-1)π10,n∈Z

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon
footer-image