Find the missing frequencies in the following frequency distribution whose mean is 34.
x102030405060Totalf4f18f23435
(3 Marks)
We know that,
Mean =∑xifi∑fi
(0.5 Marks)
Mean = (10×4+20×f1+30×8+40×f2+50×3+60×4)35
⇒34=(40+20f1+240+40f2+150+240)35
⇒34×35=670+20f1+40f2
⇒1190−670=20f1+40f2
⇒20f1+40f2=520
⇒20(f1+2f2)=520
⇒f1+2f2=52020
⇒f1+2f2=26
⇒f1=26−2f2 ......................(1)
(1 Mark)
Also, 4+f1+8+f2+3+4=35
⇒ 19+f1+f2=35
⇒ f1+f2=35−19
⇒f1+f2=16
⇒ 26−2f2+f2=16
(from (1))
⇒ 26−f2=16
⇒ 26−16=f2
⇒ f2=10 (0.5 Marks)
Putting the value of f2 in (1), we get
f1=26−2(10)=6
Hence, the value of f1 and f2 is 6 and 10, respectively.
(1 Mark)