Find the value of:
(i) (ā4)Ć·23
(ii) ā35Ć·2
(iii) ā45Ć·ā3
(iv) ā18Ć·34
(v) ā213Ć·17
(vi) ā712Ć·ā213
(vii) 313Ć·ā465
Recall the following properties of divisin of the fractions.
aĆ·bc=aĆcb ---(1)
abĆ·c=abĆ1c----(2)
abĆ·cd=abĆdc ----(3)
Now, lets evaluate given simplifications,
(i)
(ā4)Ć·23
=ā4Ć32
=ā2Ć3
=ā6
ā“(ā4)Ć·23=ā6
(ii)
ā35Ć·2
=ā35Ć12
=ā3Ć15Ć2
=ā310
ā“ā35Ć·2=ā310
(iii)
ā45Ć·ā3
=ā45Ć1ā3
=415
ā45Ć·ā3=415
(iv)
ā18Ć·34
=ā18Ć43
=ā12Ć13
=ā1Ć12Ć3
=ā16
ā“ā18Ć·34=ā16
(v)
ā213Ć·17
=ā213Ć71
=ā2Ć713Ć1
=ā1413
=ā1113
ā“ā213Ć·17=ā1113
(vi)
ā712Ć·ā213
=ā712Ć13ā2
=ā7Ć1312Ćā2
=9124
=31924
ā“ā712Ć·ā213=31924
(vii)
313Ć·ā465
=313Ć65ā4
=31Ć5ā4
=ā154
=ā334
ā“313Ć·ā465=ā334āāā