Calculating the moles of \(đľđ^{+}\) in 50 đđł of the solution
In 1 đđż of the solution = 70 đđ of \(đđ^{ +}\) is present.
So, in 50 đđż of the solution
\(=\dfrac{70~mg}{1~mL}\times50~mL=3500~mg~of~Na^{+}\) is present.
\(\because 3500~mg=3.5~g\left ( \because 1~mg=10^{-3}g \right )\)
Therefore, in 50 đđż of the solution, \(3.5~ đ ~of~ đđ ^{+}\) is present.
Thus, number of moles of \(đđ^{ +}\)
\(=\dfrac{Mass ~of~ sodium~ions}{Molar~mass~of~sodium}\)
\(=\dfrac{3.5}{23}=0.152173~mol\)
Calculating the weight of \(đľđđľđś_{đ}\) required to make the đđ đđł solution containing đđ đđ of \(đľđ^{ +}\) per đđł
0.152173 đđđ of \(đđ^{ +}\) ions are present in 50 đđż of the solution.
1 đđđ of \(đđ^{ +}\) ions is obtained from 1 đđđ of \(đđđđ_{3}\).
Thus, 0.152173 đđđ of \(đđ^{ +}\) ions will be obtained from 0.152173 đđđ of \(đđđđ_{3}\). Mass of \(đđđđ_{3}\) = đđđđđ Ă đđđđđ đđđ s
\(= 0.152173~ đđđ \times 85~ đ~ đđđ ^{â1}\)
\(= 12.934\) g
Thus, 12.934 đ of \(đđđđ_{3}\) is required to make a 50 đđż solution containing 70 đđ of \(đđ^{ +}\) per đđż.
So, option (D) is the correct answer.