wiz-icon
MyQuestionIcon
MyQuestionIcon
7
You visited us 7 times! Enjoying our articles? Unlock Full Access!
Question

(i) If A=1-202130-21, find A−1. Using A−1, solve the system of linear equations
x − 2y = 10, 2x + y + 3z = 8, −2y + z = 7

(ii) A=3-42235101, find A−1 and hence solve the following system of equations:
3x − 4y + 2z = −1, 2x + 3y + 5z = 7, x + z = 2

(iii) A=1-202130-21andB=72-6-21-3-425, find AB. Hence, solve the system of equations:
x − 2y = 10, 2x + y + 3z = 8 and −2y + z = 7

Open in App
Solution

(i)Here,A=1-202130-21A=11+6+22-0+0-4-0=7+4+0=11Let Cijbe the cofactors of the elements aijin A=aij. Then,C11=-11+113-21=7,C12=-11+22301=-2,C13=-11+3210-2=-4C21=-12+1-20-21=2,C22=-12+21001=1,C23=-12+31-20-2=2C31=-13+1-2013=-6,C32=-13+21023=-3,C33=-13+31-221=5∴adjA=7-2-4212-6-35T=72-6-21-3-425⇒A-1=1AadjA=11172-6-21-3-425or,AX=Bwhere,A=1-202130-21,X=xyzandB=1087Now,∴X=A-1B⇒X=11172-6-21-3-4251087⇒X=11170+16-42-20+8-21-40+16+35⇒xyz=11144-3311∴x=4,y=-3andz=1

(ii)Here,A=3-42235101A=33-0+42-5+20-3=9-12-6=-9Let Cijbe the cofactors of the elements aijin A=aij. Then,C11=-11+13501=3,C12=-11+22511=3,C13=-11+32310=-3C21=-12+1-4201=4,C22=-12+23211=1,C23=-12+33-410=-4C31=-13+1-4235=-26,C32=-13+23225=-11,C33=-13+33-423=17adjA=33-341-4-26-1117T=34-2631-11-3-417⇒A-1=1AadjA=1-934-2631-11-3-417AX=BHere,A=3-42235101,X=xyzandB=-172X=A-1B⇒X=1-934-2631-11-3-417-172⇒X=1-9-3+28-52-3+7-223-28+34⇒xyz=1-9-27-189∴x=3,y=2andz=-1

(iii)Here,A=1-202130-21andB=72-6-21-3-425AB=1-202130-2172-6-21-3-425⇒AB=7+4+02-2+0-6+6+014-2-124+1+6-12-3+150+4-40-2+20+6+5=110001100011⇒AB=11100010001AB=11I3⇒111AB=I3⇒111BA=I3⇒A-1=111B⇒A-1=11172-6-21-3-425X=A-1BX=11172-6-21-3-4251087xyz=11170+16-42-20+9-21-40+16+35xyz=11144-3311∴x=4,y=-3andz=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle Bisectors
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon
footer-image