wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) Verify the points (0,7,10),(1,6,6) and (4,9,6) are the vertices of an isosceles triangle.

(ii) Verify the points (0,7,10),(1,6,6) and (4,9,6) are the vertices of a right angled triangle.

(iii) Verify the points (1,2,1),(1,2,5),(4,7,8) and (2,3,4) are the vertices of a parallelogram.

Open in App
Solution

(i) Finding side lengths.

Let the given points be
A(0,7,10),B(1,6,6) & C(4,9,6)
Now, we calculate the side lengths AB,BC & AC

Calculating AB:

AB=(x2x1)2+(y2y1)2+(z2z1)2

=(10)2+(67)2+(6(10))2

=18
=32

Calculating BC:

BC=(x2x1)2+(y2y1)2+(z2z1)2

=(41)2+(96)2+(6(6))2
=(3)2+(3)2+(6+6)2

=9+9+0
=18
=32

AB=32,BC=32
Verification
AB=BC
Hence, ABC is an isosceles triangle.

Note: We don't need to calculate third side, because for an isosceles triangle we need only two sides to be equal.

(ii) Finding side lengths.

Let the given points be
A(0,7,10),B(1,6,6) & C(4,9,6)
Now, we calculate the side lengths AB,BC & AC

Calculating AB:

AB=(x2x1)2+(y2y1)2+(z2z1)2

=(10)2+(67)2+(610)2
=(1)2+(1)2+(4)2

=1+1+16
=18

Calculating BC:
B(1,6,6) & C(4,9,6)

BC=(x2x1)2+(y2y1)2+(z2z1)2

=(4(1))2+(96)2+(66)2
=(4+1)2+(3)2+(0)2

=9+9
=18
AB=18,BC=18

Calculating AC:
A(0,7,10) & C(4,9,6)

AC=(x2x1)2+(y2y1)2+(z2z1)2

=(4(0))2+(97)2+(610)2
=(4)2+(2)2+(4)2

=16+4+16
=36
=6
AB=18,BC=18,AC=6

Verification
AB2+BC2=(18)2+(18)2
=36
=AC2

As we know in Right angled triangle,

(Hypotenuse)2=(Height)2+(Base)2

Here, AB2+BC2=AC2

Hence, the given points form a right angled triangle.

(iii) Finding lengths of sides and diagonal.
Let the given points be
A(1,2,1),B(1,2,5) C(4,7,8) & D(2,3,4)

Calculating AB:

AB=(x2x1)2+(y2y1)2+(z2z1)2

=(1(1))2+(22)2+(51))2
=(2)2+(4)2+(4)2

=4+16+16
=36
=6
AB=6

Calculating BC:
B(1,2,5) & C(4,7,8)

BC=(x2x1)2+(y2y1)2+(z2z1)2

=(3)2+(5)2+(3)2
=9+25+9

=43

AB=6,BC=43

Calculating CD:
C(4,7,8) & D(2,3,4)

CD=(x2x1)2+(y2y1)2+(z2z1)2

=(24)2+(3(7))2+(48)2
=(2)2+(4)2+(4)2

=4+16+16
=36

AB=6,BC=43,CD=6

Calculating AD
A(1,2,1) & D(2,3,4)
=(2(1))2+(32)2+(41)2
=(3)2+(5)2+(3)2

=9+25+9
=43

Now, AB=CD and
BC=AD

Hence, Opposite sides are equal.

AB=6,BC=43,CD=6,AD=43

Now, finding length of diagonals

Calculating AC
A(1,2,1) & C(4,7,8)
=(4(1))2+(72)2+(81)2
=(5)2+(9)2+(7)2

=25+81+49
=155
AC=155

Calculating BD
B(1,2,5) & D(2,3,4)
=(21))2+(3(2))2+(45)2
=(1)2+(1)2+(1)2

=1+1+1
=3

So, ACBD i.e., diagonal are not equal.

Final Answer:

The diagonals are not equal, but opposite sides are equal.

So, ABCD is parallelogram.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon