If 3 cos x ≠ 2 sin x, then the general solution of sin2x - cos 2x = 2 - sin 2x is
ππππnπ + (-1)nπ2, n ∈ Z
nπ2, n ∈ Z
ππ4n ± 1π2, n ∈ Z
(2n – 1), n ∈ Z
Explanation for the correct option:
Find the general solution of given equation:
Given, sin2x – cos 2x = 2 – sin 2x
⇒1 – cos2x – (2 cos2x – 1) – 2 + sin 2x = 0 ∵sin2θ + cos2θ = 1
⇒ 1 – 3 cos2x + 1 – 2 + 2 sin x cos x = 0
⇒ cos x(2 sin x – 3 cos x) = 0
⇒ cos x = 0, 2 sin x – 3 cos x = 0
⇒ cos x = 0 ∵3 cos x ≠ 2 sin x
⇒ ππx=π2
𝛑𝛑∴x = 2nπ ± π 2= (4n ± 1)π2, n ∈ Z
Hence, Option ‘C’ is Correct.