If n(A)=3, n(B)=5 and n(A∩B)=2 then n[(A×B)∩(B×A)] =
5
3
4
6
Explanation of the correct option
Given: n(A)=3, n(B)=5,n(A∩B)=2
We know that,
(A×B)∩(B×A)=A∩B×B∩A⇒ (A×B)∩(B×A)=A∩B2 ∵A∩B=B∩A ⇒n(A×B)∩(B×A)= nA∩B2⇒n(A×B)∩(B×A)= 22⇒n(A×B)∩(B×A)= 4
Hence, option(C) i.e. 4 is the correct option.