Given:
tanθ=sinα−cosαsinα+cosα
Divide numerator and denominator of RHS by cosα
⇒tanθ=tanα−1tanα+1
⇒tanθ=tanα–tanπ41+tanαtanπ4
⇒tanθ=tan(α−π4)
⇒θ=(α−π4)
Apply cosine on both sides
⇒cosθ=cos(α−π4)
⇒cosθ=cosαcosπ4+sinαsinπ4
(∵ cos(A−B)=cosAcosB+sinAsinB)
⇒cosθ=1√2cosα+1√2sinα
⇒√2cosθ=cosα+sinα
Hence, proved.