wiz-icon
MyQuestionIcon
MyQuestionIcon
5
You visited us 5 times! Enjoying our articles? Unlock Full Access!
Question

If tanθ=sinαcosαsinα+cosα then show that sinα+cosα=2cosθ

Open in App
Solution

Given:

tanθ=sinαcosαsinα+cosα
Divide numerator and denominator of RHS by cosα
tanθ=tanα1tanα+1
tanθ=tanαtanπ41+tanαtanπ4
tanθ=tan(απ4)
θ=(απ4)
Apply cosine on both sides
cosθ=cos(απ4)
cosθ=cosαcosπ4+sinαsinπ4
( cos(AB)=cosAcosB+sinAsinB)
cosθ=12cosα+12sinα
2cosθ=cosα+sinα

Hence, proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon