If the value of (1+i)1āi(1āi)1+i = isin p + cos p. Find the value of p.
2
z = (1+i)1−i(1−i)1+i
Taking loge on both sides
logez = (1-i)loge(1+i)−(1+i)loge(1−i)
= (1-i)loge[√2.eiπ4]−(1+i)loge[√2.ei(π4)]
= (1-i) [loge√2+iπ4] - (1+i) [loge√2+(−iπ4)]
= loge√2+iπ4−iloge√2−i2π4−loge√2+iπ4−iloge√2+i2π4
= iπ2−2iloge√2
logez=iπ2−iloge2
z = eiπ2.eiloge2
= [(cosπ2+isinπ2)(cos(loge2)+isin(loge2))]
= 1 × [cos(log 2) + i sin(log 2) ]
z = [cos(loge2) + i sin(loge2)]
From the above equation, we can see that p = loge2