∫ex(1−cotxsinx)dx
∫ex[cosecx+(−cosecxcotx)]dx
=ex(cosecx)+c
equals
A. − cot (exx) + C
B. tan (xex) + C
C. tan (ex) + C
D. cot (ex) + C
∫x+3x+42exdx= (a) exx+4+C (b) exx+3+C (c) 1x+42+C (d) exx+42+C
∫ex(x−1)(x−ln x)x2dx is equal to