wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

4ex+6e-x9ex-4e-xdx=


A

32x+3535log9e2x-4+C

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

32x+3536log9e2x-4+C

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

-32x+3536log9e2x-4+C

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

-52x+3536log9e2x-4+C

No worries! We‘ve got your back. Try BYJU‘S free classes today!
E

52x+3566log9e2x-4+C

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

-32x+3536log9e2x-4+C


Explanation for the correct option:

Step1: Expanding the given integral

4ex+6e-x9ex-4e-xdx=4ex+6ex9ex-4exdx=4e2x+6ex9e2x-4exdx=4e2x+69e2x-4dx=499e2x+64×99e2x-4dx[take4ascommonandthen×and÷by9innumerator]=499e2x-4+4+2729e2x-4dx[Addandsubtractby4innumerator]=499e2x-49e2x-4dx+4+27219e2x-4dx=49dx+35219e2x-4dx(i)

19e2x-4dx=dzz4+z9[z=9e2x-4;e2x=4+z9,2e2xdx=(19)dz]=12dzz4+z=12dzz4+z

Step 2: Integrating by partial fraction

dzz4+z=Azdz+B4+zdzie,A4+z+Bz=1wherez=-4B=-14wherez=0A=1412dzz4+z=12141zdz-1414+zdz=14121zdz-14+zdz

Substituting in equation (i) we get,

=49dx+352181zdz-14+zdz=49dx+35361zdz-353614+zdz

=49x+3536logz-3536log4+z+C=49x+3536log9e2x-4-3536log9e2x+C=49x+3536log9e2x-4-3536log9-3536loge2x+C[logab=loga+logb]=49x+3536log9e2x-4-35362x+C[lne=1]=49x-3518x+3536log9e2x-4+C=-2718x+3536log9e2x-4+C=-32x+3536log9e2x-4+C

Hence, option (C) is the correct answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Rate of Change
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon