wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let α and β be nonzero real numbers such that 2(cosβcosα)+cosαcosβ=1. Then which of the following is/are true?

A
tan(α2)+3tan(β2)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
3tan(α2)+tan(β2)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
tan(α2)3tan(β2)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
3tan(α2)tan(β2)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A tan(α2)+3tan(β2)=0
C tan(α2)3tan(β2)=0
2(cosβcosα)+cosαcosβ=1 (1)

Since, cos2α=1tan2α1tan2α

i.e.,
cosα=1a1+a; where a=tan2α2
cosβ=1b1+b; where b=tan2β2

From (1), we get
2[(1b1+b)(1a1+a)]+[(1a1+a).(1b1+b)]1=0

2(1b)(1+a)2(1a)(1+b)+(1a)(1b)(1+a)(1+b)(1+a)(1+b)=0

2(1b)(1+a)2(1a)(1+b)+(1a)(1b)(1+a)(1+b)=0
a=3b

tan2α2=3tan2β2
tan2α23tan2β2=0

(tanα23tanβ2)((tanα2+3tanβ2)=0

tanα23tanβ2=0,and tanα2+3tanβ2=0
Therefore, Option (1) and (3) are correct.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon