Clearly, domain is [−1,1]
f(x)=(sin−1x)2−(cos−1x)2
=(sin−1x+cos−1x)(sin−1x−cos−1x)
=π2(sin−1x−(π2−sin−1x))
∴f(x)=π2(2sin−1x−π2) for all x∈[−1,1]
f′(x)=π√1−x2>0
f is a strictly increasing function.
So, fmax=f(1)=π2(2(π2)−π2)=π24
and fmin=f(−1)=π2(−2(π2)−π2)=−3π24
Range of f is [−3π24,π24]≡[aπ24,bπ24] (Given)
∴a=−3 and b=1
Hence, b−a=1−(−3)=4