Prove that (2, -2), (-2, 1) and (5, 2) are the vertices of a right angled triangle. Find the area of the triangle and the length of the hypotenuse.
Let A (2, – 2), B (– 2, 1) and C (5, 2) be the vertices of ΔABC.
AB=√(2−(−2))2+(−2−1)2=√42+(−3)2=√16+9=√25=5
BC=√(−2−5)2+(1−2)2=√(−7)2+(−1)2=√49+1=√50=5√2
CA=√(5−2)2+(2−(−2))2=√(3)2+(4)2=√16+9=√25=5
AB2+CA2=(5)2+(5)2=25+25=50
BC2=(5√2)2=50
AB2+CA2=BC2
In ΔABC,
AB2+CA2=BC2
∴ ΔABC is a right triangle right angled at ∠A. (Converse of Pythagoras theorem)
Length of hypotenuse, BC=5√2
Area of ΔABC
=12×AB×CA=12×5×5=252=12.5 sq.units
[Since, Area of triangle=12×base×height]
Hence required area 12.5 sq units