Prove that (tanA1-cotA)+(cotA1-tanA)=1+tanA+cotA
To prove: (tanA1-cotA)+(cotA1-tanA)=1+tanA+cotA
Consider L.H.S :
(tanA1-cotA)+(cotA1-tanA)=tanA1-1tanA+1tanA1-tanA=tanAtanA-1tanA+1tanA(1-tanA)=tan2AtanA-1+1tanA(1-tanA)=1-tan3AtanA(1-tanA)[∵a3-b3=(a-b)(a2+b2+ab)]=(1-tanA)(1+tan2A+tanA)tanA(1-tanA)=1+tan2A+tanAtanA=1tanA+tan2AtanA+tanAtanA=cotA+tanA+1=1+tanA+cotA
Hence, it is proved that (tanA1-cotA)+(cotA1-tanA)=1+tanA+cotA
Using the formula, tan2A=2tanA1-tan2A, find the value of tan60°, it being given that tan30°=13