wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that : 1×22+2×32+...+n×(n+1)212×2+22×3+...+n2×(n+1)=3n+53n+1

Open in App
Solution

Step 1. Solving given data.

nth term of the numerator =n(n+1)2=n3+2n2+n

nth term of the denominator =n2(n+1)=n3+n2

L.H.S=1×22+2×32+...+n×(n+1)212×2+22×3+...+n2×(n+1)=nn=1 annn=1 an

L.H.S=nn=1(n3+2n2+n)nn=1(n3+n2).........(i)

Step 2. Solving numerator of L.H.S. separately for nth term.

Now, numerator,
nn=1(n3+2n2+n)

=n2(n+1)24+2n(n+1)(2n+1)6+n(n+1)2

=n(n+1)2[n(n+1)2+23(2n+1)+1]

=n(n+1)2[3n2+3n+8n+4+66]

=n(n+1)12[3n2+11n+10]

=n(n+1)12[3n2+6n+5n+10]

=n(n+1)12[3n(n+2)+5(n+2)]

Numerator =n(n+1)(n+2)(3n+5)12.......(ii)

Step 3. Solving denominator of L.H.S. separately for nth term.

Now denominator,

nn=1(n3+n2)=n2(n+1)24+n(n+1)(2n+1)6

=n(n+1)2[n(n+1)2+2n+13]

=n(n+1)2[3n2+3n+4n+26]

=n(n+1)2[3n2+7n+26]
=n(n+1)2[3n2+6n+n+26]

=n(n+1)2[3n(n+2+1(n+2)6]

Denominator =n(n+1)(3n+1)(n+2)12.......(iii)

Step 4. Solve for prove.

Putting (ii) and (iii) in (i)

L. H.S=n(n+1)(n+2)(3n+5)12n(n+1)(3n+1)(n+2)12

L. H.S=(3n+5)(3n+1)

L.H.S = R.H.S

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon