Step 1. Solving given data.
∵nth term of the numerator =n(n+1)2=n3+2n2+n
nth term of the denominator =n2(n+1)=n3+n2
L.H.S=1×22+2×32+...+n×(n+1)212×2+22×3+...+n2×(n+1)=∑nn=1 an∑nn=1 an
L.H.S=∑nn=1(n3+2n2+n)∑nn=1(n3+n2).........(i)
Step 2. Solving numerator of L.H.S. separately for nth term.
Now, numerator,
∑nn=1(n3+2n2+n)
=n2(n+1)24+2n(n+1)(2n+1)6+n(n+1)2
=n(n+1)2[n(n+1)2+23(2n+1)+1]
=n(n+1)2[3n2+3n+8n+4+66]
=n(n+1)12[3n2+11n+10]
=n(n+1)12[3n2+6n+5n+10]
=n(n+1)12[3n(n+2)+5(n+2)]
Numerator =n(n+1)(n+2)(3n+5)12.......(ii)
Step 3. Solving denominator of L.H.S. separately for nth term.
Now denominator,
∑nn=1(n3+n2)=n2(n+1)24+n(n+1)(2n+1)6
=n(n+1)2[n(n+1)2+2n+13]
=n(n+1)2[3n2+3n+4n+26]
=n(n+1)2[3n2+7n+26]
=n(n+1)2[3n2+6n+n+26]
=n(n+1)2[3n(n+2+1(n+2)6]
Denominator =n(n+1)(3n+1)(n+2)12.......(iii)
Step 4. Solve for prove.
Putting (ii) and (iii) in (i)
L. H.S=n(n+1)(n+2)(3n+5)12n(n+1)(3n+1)(n+2)12
L. H.S=(3n+5)(3n+1)
L.H.S = R.H.S
Hence proved.