sin−1[x√1−x−√x√1−x2]=
sin−1x−sin−1√1−x
sin−1x+sin−1√1−x
sin−1x−sin−1√x
None
sin−1x−sin−1√x
sin−1[x√1−x−√x√1−x2]
Substitute x=sinθ and √x=sinϕ so that θ=sin−1x and ϕ=sin−1√x
We get sin−1[sinθ√1−sin2ϕ−sinϕ√1−sin2θ]
=sin−1[sinθcosϕ−sinϕcosθ]=sin−1[sin(θ−ϕ)]=θ−ϕ=sin−1x−sin−1√x