The given expression (a+b)(a−b)+(b+c)(b−c)+(c+a)(c−a) can be solved as follows:
[(a+b)(a−b)]+[(b+c)(b−c)]+[(c+a)(c−a)]=(a2−b2)+(b2−c2)+(c2−a2)(∵x2−y2=(x−y)(x+y))=a2−b2+b2−c2+c2−a2=0
Hence, (a+b)(a−b)+(b+c)(b−c)+(c+a)(c−a)=0.