wiz-icon
MyQuestionIcon
MyQuestionIcon
13
You visited us 13 times! Enjoying our articles? Unlock Full Access!
Question

Solve system of linear equations, using matrix method.
xy+z=4
2x+y3z=0
x+y+z=2


Open in App
Solution

Simplification of given data
Given: The system of equations is
xy+z=4
2x+y3z=0
x+y+z=2
Writing above equation as AX=B
111213111xyz=402
Hence, A=111213111,X=xyz and B=402
Calculate A1
Calculating |A|
|A|=∣ ∣111213111∣ ∣
=11311(1)2311+12111
=1(1+3)+1(2+3)+1(21)
=1(4)+1(5)+1(1)
=4+5+1=10
Since |A|0
The system of equations is consistent and has a unique solution.
A=111213111
Calculate adj (A)
M11=[1311]=1+3=4
M12=[2311]=2+3=5
M13=[2111]=21=1
M21=[1111]=11=2
M22=[1111]=11=0
M23=[1111]=1+1=2
M31=[1113]=31=2
A=111213111
M32=[1123]=32=5
M33=[1121]=1+2=3
Thus,
adj (A)
=A11A21A31A12A22A32A13A23A33T
=M11M21M31M12M22M32M13M23M33=422505123
adj A=422505123
Now,
A1=1|A|adj A
=110422505123
Solve for the values of x,y and z
AX=B
X=A1B
xyz=110422505123402
xyz=1104(4)+2(0)+2(2)5(4)+0(0)+5(2)1(4)2(0)+3(2)
xyz=11016+0+420+0+1040+6
xyz=110201010
xyz=211
​​​​​​​x=2,y=1 and z=1


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon