wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following system of equations by matrix method.
3x2y+3z=8
2x+yz=1
4x3y+2z=4

Open in App
Solution

Simplification of given data
The system of equation is
3x2y+3z=8
2x+yz=1
4x3y+2z=4
Writing equation as AX=B
323211432xyz=814
(A) (X) (B)
Hence,
A=323211432,X=xyz & B=814
Calculate A1
A=323211432
|A|=∣ ∣323211432∣ ∣
=31132(2)2142+32143
=3(23)+2(4+4)+3(64)
=3+1630=17
Calculate adjoint A
M11=1132=23=1
M12=2142=4+4=8
M13=2143=64=10
M21=2332=4+9=5
M22=3342=612=6
M23=3243=9+8=1
M31=2311=23=1
M32=3321=36=9
M33=3221=3+4=7
Thus adj (A)=A11A12A13A21A22A23A13A32A33T=A11A21A31A12A22A32A13A23A33
=M11M21M31M12M22M23M13M23M33
=1518691017
Calculating A1
A1=1|A|adj(A)
=1171518691017
Solve for the value of x,y and z
X=A1B
xyz=1171518691017814
xyz=1171(8)+(5)(1)+(1)(4)8(8)+(6)(1)+9(4)10(8)+1(1)+7(4)
xyz=117854646+3680+1+28
xyz=117173451
xyz=123
Therefore, x=1,y=2 and z=3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon