The maximum value of f(x)=sin2x1+cos2xcos2x1+sin2xcos2xcos2xsin2xcos2xsin2x,x∈R is:
7
5
34
Explanation for the correct option:
Solve for the maximum value of f(x)=sin2x1+cos2xcos2x1+sin2xcos2xcos2xsin2xcos2xsin2x
C1→C1+C2=21+cos2xcos2x2cos2xcos2x1cos2xsin2xR1→R1-R2=0102cos2xcos2x1cos2xsin2x=(-1)2sin2x-cos2xf(x)=cos2x-2sin2x
The maximum value of acosx+bsinx is a2+b2
Therefore the Maximum value of f(x)=12+-22
=5
Hence the maximum value of f(x)=sin2x1+cos2xcos2x1+sin2xcos2xcos2xsin2xcos2xsin2xis 5.
Hence, the correct answer is option (B)
Let f1:R→R;f2:[0,∞)→f3:R→R and f4:R→[0,∞) be defined by f1(x)=|x| if x<0=exifx≥0f2(x)=x2f3(x)=sin x if x<0=x ifx≥0 and f4(x)=f2(f1(x)), ifx<0f2(f1(x))−1, ifx≥0
List−IList−IIP.f2 is1.Onto but not one-oneQ.f3 is2.Neither continuous nor one-oneR.f4 is3.Differentiable but not one-oneS.f2 of1is4.Continuous and one-one