wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The minimum uncertainty in the speed of an electron in a one dimensional region of length \(2a_0\) (where \(a_0=\)Bohar radius \(52.9\) pm) is \(km~s^{-1}\).

(Given : Mass of electron \(=9.1\times 10^{-31}\) kg, Planck's constant \(h=6.63\times 10^{-34}Js\))

Open in App
Solution

Heisenberg's uncertainty principle

\(\Delta x\times \Delta P_x\geq \dfrac{h}{4\pi}\)

\(\Rightarrow 2a_0\times m\Delta v_x=\dfrac{h}{4\pi}\) (minimum)

\(\Rightarrow \Delta V_x=\dfrac{h}{4\pi}\times \dfrac{1}{2a_0}\times \dfrac{1}{m}\)

\(=\dfrac{6.63\times 10^{-34}}{4\times 3.14\times 2\times 52.9\times 10^{-12}\times 9.1\times 10^{-31}}\)

\(=548273~ms^{-1}\)

\(=548.273~kms^{-1}\)

\(=548~kms^{-1}\)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Heisenberg's Uncertainty Principle
CHEMISTRY
Watch in App
Join BYJU'S Learning Program
CrossIcon