The correct option is A Zero
Given, 1+sinxsin2x2=0
As we know, cosx=1−2sin2x2
So, sin2x2=1−cosx2
∴1+sinx(1−cosx2)=0
⇒2+sinx–sinxcosx=0
Multiply by 2 both sides
⇒4+2sinx–2sinxcosx=0
⇒sin2x–2sinx=4
Since, the maximum value which sin2x and 2sinx can take is 1.
Hence, this is not possible for any x in [−π,π].
Hence, the correct answer is Option a.