wiz-icon
MyQuestionIcon
MyQuestionIcon
11
You visited us 11 times! Enjoying our articles? Unlock Full Access!
Question

The number of solutions of the equation 1+sinxsin2x2=0, in [π,π]

A
Zero
loader
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
One
loader
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Two
loader
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Three
loader
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A Zero
Given, 1+sinxsin2x2=0
As we know, cosx=12sin2x2

So, sin2x2=1cosx2
1+sinx(1cosx2)=0
2+sinxsinxcosx=0

Multiply by 2 both sides
4+2sinx2sinxcosx=0
sin2x2sinx=4

Since, the maximum value which sin2x and 2sinx can take is 1.

Hence, this is not possible for any x in [π,π].

Hence, the correct answer is Option a.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon
footer-image