The correct option is D (nπ,nπ+π6),n∈Z
Given: tanx−tan2x>0 and |2sinx|<1
Now,
|2sinx|<1⇒|sinx|<12⇒−π6<x<π6
As the period of |sinx| is π, so
−π6+nπ<x<π6+nπ,n∈Z
Also,
tanx−tan2x>0⇒tanx(tan x−1)<0⇒0<tanx<1⇒0<x<π4
As the period of tanx is π, so
⇒nπ<x<nπ+π4,n∈Z
Therefore,
x∈(nπ,nπ+π6),n∈Z