wiz-icon
MyQuestionIcon
MyQuestionIcon
19
You visited us 19 times! Enjoying our articles? Unlock Full Access!
Question

The solution of the equation (x2+xy)dy=(x2+y2)dxis

A
logx=(x−y)+yx+c
loader
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
logx=2log(x−y)+yx+c
loader
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
logx=log(x−y)+xy+c
loader
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these above
loader
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C logx=(x−y)+yx+c
Given: (x2+xy)dy=(x2+y2)dx
To find: Solution of the eq
Now,
(x2+xy)dy=(x2+y2)dx
divide x2 bo both side.
∴(1+yx)dy=(1+y2x2)dx

or , (1+yx)dydx=(1+y2x2)

Let, yx=v⇒y=xv

or dydx=v+xdvdx

∴(1+v)(v+xdvdx)=(1+v2)

or, v+xdvdx=1+v21+v−v

or, xdvdx=1+v2−v−v21+v

or xdvdx=1−v1+v

Integrating both side

∴∫(1+v1−v)dv=∫dxx

or, ∫(21−v−1)dv=∫dxx

or ∫21−vdv−∫dv=∫dxx

or, −2log(1−v)−v=log+c

or 2log(1−v)+logx+v=c

or, log(1−v)2+logx+v=c

or log{x(1−yx)2}+yx=c

or log{x(x−yx)2}=c−yx

or (x−y)2.1x=c.e−y/x

or (x−y)2=xe−y/x.c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon
footer-image