The total number of solutions of the equation cosx.cos2x.cos3x=14 in [0,π] is
6
Given
cosx.cos2x.cos3x=14
⇒4(cos3x.cosx)cos2x=1
⇒2(2cos3x.cosx)cos2x=1
⇒2(cos4x+cos2x)cos2x=1
⇒2(2cos22x−1+cos2x)cos2x=1
⇒4cos32x+2cos22x−2cosx−1=0
⇒2cos22x(2cos2x+1)−(2cos2x+1)=0
⇒(2cos22x−1)(2cos2x+1)=0
⇒cos4x.(2cos2x+1)=0
cos4x=0 or 2cos2x+1=0
cos4x=cosπ2 or cos2x=−12
4x=(2n1+1)π2, n1 ∈Z or 2x=2n2π±2π3,n2∈Z
x=(2n1+1)π8, n1 ∈Z or x=n2π±π3,n2∈Z
∴x=π8,3π8,5π7,7π8 or x=π3,2π3
∴ The equation has 6 solutions as x∈[0,π]
Hence the correct answer is Option B.