Total number of ordered pairs (x,y) satisfying
|x|+|y|=2, sin(πx23)=1 is
4
Given
|x|+|y|=2⇒|x|,|y|∈[0,2]
sin(πx23)=1⇒πx23=(4n+1)π2
⇒x23=(4n+1)2
⇒x2=(4n+1)32
[∵|x|≤2⇒x2≤4]
⇒x2=32
⇒|x|=√32⇒|y|=2−√32
⇒x=+√32,−√32y=(2−√32),−(2−√32)
∴4 Ordered pairs are possible.
Hence the correct answer is Option C.