1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Summation of Determinant
Using cofacto...
Question
Using cofactors of elements of third column evaluate
Δ
=
∣
∣ ∣
∣
1
x
y
z
1
y
z
x
1
z
x
y
∣
∣ ∣
∣
Open in App
Solution
∣
∣ ∣
∣
1
x
y
z
1
y
z
x
1
z
x
y
∣
∣ ∣
∣
Cofactors of elements of third row are
C
31
=
(
−
1
)
3
+
1
∣
∣
∣
x
y
z
y
z
x
∣
∣
∣
⇒
C
31
=
x
2
z
−
y
2
z
C
32
=
(
−
1
)
3
+
2
∣
∣
∣
1
y
z
1
z
x
∣
∣
∣
⇒
C
32
=
−
(
z
x
−
y
z
)
=
y
z
−
z
x
C
33
=
(
−
1
)
3
+
3
∣
∣
∣
1
x
1
y
∣
∣
∣
⇒
C
33
=
y
−
x
Now,
Δ
=
1
C
31
+
z
C
32
+
x
y
C
33
Δ
=
x
2
z
−
y
2
z
+
z
(
y
z
−
z
x
)
+
x
y
(
y
−
x
)
⇒
Δ
=
x
2
z
−
y
2
z
+
y
z
2
−
x
z
2
+
x
y
2
−
x
2
y
Suggest Corrections
0
Similar questions
Q.
Using cofactors of elements of third column, evaluate
Δ
=
∣
∣ ∣
∣
1
x
y
z
1
y
z
x
1
z
x
y
∣
∣ ∣
∣
Q.
Using cofactors of elements of third column , evaluate
△
=
∣
∣ ∣
∣
1
x
y
z
1
y
z
x
1
z
x
y
∣
∣ ∣
∣
Q.
Using Cofactors of elements of third column, evaluate