Which of the following cases may lead to non trivial solutions in case of system of linear equations according to Cramer's rule Convention?
D1 = 0, D2 = 0, D3 = 0
D1 = 0, D2 = 0, D3 != 0
D1 != 0, D2 != 0, D3 = 0
D1 != 0, D2 != 0, D3 != 0
1) D != 0, at least one of D1,D2,D3 != 0
Then there exists a non trivial solution implies nontrivial solution possible
2) D ! = 0, D1 = D2 = D3 = 0,
only the trivial solution exists implies nontrivial solutions are impossible
3) D = 0, D1 = D2 = D3 = 0,
either infinite or no solutions implies nontrivial solution may be possible
4) D = 0, at least one of D1,D2,D3 != 0
no solutions possible implies no nontrivial solutions possible
From case 1 and 3 non trivial solutions are possible if at least one of D1,D2,D3 != 0 or if D1 = D2 = D3 = 0 I.e all the options may give nontrivial solutions depending on what value D has. So all options are correct.