wiz-icon
MyQuestionIcon
MyQuestionIcon
6
You visited us 6 times! Enjoying our articles? Unlock Full Access!
Question

xcosyx·ydx+xdy=ysinyx·xdy-ydx

Open in App
Solution

Wehave,xcosyxydx+xdy=ysinyxxdy-ydx⇒xycosyxdx+x2cosyxdy=xysinyxdy-y2sinyxdx⇒xycosyx+y2sinyxdx=xysinyx-x2cosyxdy⇒dydx=xycosyx+y2sinyxxysinyx-x2cosyxThisisahomogeneousdifferentialequation.Puttingy=vxanddydx=v+xdvdx,wegetv+xdvdx=vx2cosv+v2x2sinvvx2sinv-x2cosv⇒v+xdvdx=vcosv+v2sinvvsinv-cosv⇒xdvdx=vcosv+v2sinvvsinv-cosv-v⇒xdvdx=vcosv+v2sinv-v2sinv+vcosvvsinv-cosv⇒xdvdx=2vcosvvsinv-cosv⇒vsinv-cosv2vcosvdv=1xdxIntegratingbothsides,weget∫vsinv-cosv2vcosvdv=∫1xdx⇒∫vsinv-cosvvcosvdv=2∫1xdx⇒∫vsinvvcosvdv-∫cosvvcosvdv=2∫1xdx⇒∫tanvdv-∫1vdv=2∫1xdx⇒logsecv-logv=2logx+logC⇒logsecvv=logCx2⇒secvv=Cx2Puttingv=yx,wegetsecyx=yx×C×x2⇒secyx=CxyHence,secyx=Cxyistherequiredsolution.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon
footer-image